Metallacyclic Complexes. Part 2.1 Synthesis of Metallathietane-3,3-dioxide Complexes of Platinum(II) and Palladium(II); the Crystal Structures of $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}-\right.\right.$ (COPh) $\left.\}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \dagger$

William Henderson, Raymond D. W. Kemmitt, * Lesley J. S. Prouse, and David R. Russell Department of Chemistry, The University, Leicester LE1 7RH

Abstract

The reactions of the complexes cis- $\left[\mathrm{PtCl}_{2} \mathrm{~L}_{2}\right]$ or trans $-\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right]$ ($\mathrm{L}=$ tertiary phosphine or triphenyl phosphite) with bis(benzoylmethyl) sulphone or the dimethyl ester of $2,2^{\prime}$-sulphonyldiacetic acid and an excess of silver(॥) oxide in refluxing dichloromethane afford, in high yields, the metallathietane-3,3-dioxide complexes $\left.\left[\overline{\mathrm{M}\left\{\mathrm{CH}(\mathrm{COR}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C}\right.} \mathrm{H}(\mathrm{COR})\right\} \mathrm{L}_{2}\right]\left(R=\mathrm{Ph}, \mathrm{M}=\mathrm{Pt}\right.$ or $\mathrm{Pd}, \mathrm{L}=\mathrm{PPh}_{3}$, $\mathrm{PMePh}_{2}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMe}_{3}, \mathrm{PEt}_{3}$, or $\mathrm{PBu}_{3} ; \mathrm{M}=\mathrm{Pt}, \mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3} ; \mathrm{R}=\mathrm{OMe}, \mathrm{M}=\mathrm{Pt}$ or $\left.\mathrm{Pd}, \mathrm{L}=\mathrm{PPh}_{3}\right)$. Single-crystal X-ray diffraction studies have been carried out on $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}[(6 \mathbf{a})]$ and $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}[(6 i)]$. Crystals of $(6 \mathbf{a}) \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are triclinic, space group $P \overline{1}, Z=2$, in a unit cell with lattice parameters $a=20.835(2), b=10.628(2), c=12.577(4) \AA, \alpha=109.6(1), \beta=105.8(1)$, and $\gamma=91.4(1)^{\circ}$. The structure was refined to $R 0.0595$ ($R^{\prime} 0.0580$) for 5553 reflections having $7<2 \theta<54^{\circ}$ (Mo- K_{α} X-radiation) collected at room temperature. Crystals of (6i) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ are triclinic, space group $P \overline{1}, Z=2$, in a unit cell with lattice parameters $a=12.985(5), b=13.93(1), c=12.057(6) \AA$, $\alpha=73.71(3), \beta=102.61(5)$, and $\gamma=100.01(3)^{\circ}$. The structure was refined to $R 0.0745$ (R^{\prime} 0.0823) for 5536 reflections having $7<2 \theta<54^{\circ}$ collected at room temperature. Both molecules contain a puckered metallathietane-3,3-dioxide ring [fold angles 15.3(6) for (6a) and 30.2(2) ${ }^{\circ}$ for $(6 i)]$. The puckering of the four-membered rings, together with the presence of short C-S bonds suggests a heteroallylic contribution to the metallacyclic bonding. N.m.r. data for the metallathietane-3,3-dioxide complexes are also reported.

We have recently shown that a number of metallathietane-3,3dioxide complexes of platinum(II) [(1)], palladium(II), and nickel(II) are formed on treatment of the complexes cis- or trans$\left[\mathrm{MCl}_{2} \mathrm{~L}_{2}\right]$ ($\mathrm{L}=$ donor ligand) with the 1,3 -dianion of dibenzyl sulphone (2). ${ }^{1}$ The utility of silver(I) oxide in the synthesis of the η^{3}-oxodimethylenemethane-platinum complex (3) via the 1,3disubstituted acetone (4) ${ }^{2}$ led us to investigate the reactions of the related sulphones (5) in the synthesis of four-membered metallacycles. A preliminary account of some of this work has been reported. ${ }^{3}$

Results and Discussion

Treatment of the complexes cis- $\left[\mathrm{PtCl}_{2} \mathrm{~L}_{2}\right] \quad\left[\mathrm{L}=\mathrm{PPh}_{3}\right.$, $\mathrm{PMePh}_{2}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMe}_{3}, \mathrm{PEt}_{3}, \mathrm{PBu}_{3}$, or $\left.\mathrm{P}(\mathrm{OPh})_{3}\right]$ or trans$\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PMePh}_{2}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMe}_{3}, \mathrm{PEt}_{3}\right.$, or $\mathrm{PBu}^{\mathrm{n}}{ }_{3}$) with one equivalent of (5a) and an excess of silver(I) oxide in refluxing dichloromethane affords high yields of the air-stable metallathietane-3,3-dioxide complexes ($\mathbf{6 a}$)-($\mathbf{6 m}$). Similarly, treatment of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ or trans- $\left[\mathrm{PdCl}_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with one equivalent of (5b) and an excess of silver(I$)$ oxide affords the complexes ($\mathbf{6 n}$) and ($\mathbf{6 0}$) respectively. Interestingly, the reaction of the $1,3,5$-triketone, (7), with cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in the presence of silver(I) oxide gives the known dienediolate complex (8). ${ }^{4}$ This difference can be

[^0]
(1)

(2)
(a) $M=P t, L=A s P h_{3}$

(3)

R
(5a) COPh
(5b) $\quad \mathrm{CO}_{2} \mathrm{Me}$
attributed to the reluctance of sulphones to take part in conjugation as compared to related ketones.

In order to compare the molecular structures of benzoylsubstituted platina- and pallada-thietane-3,3-dioxide complexes

Complex	L	Complex	L
$M=P t$; (6a)	PPh_{3}	$M=P d ; ~(6 h)$	PPh_{3}
$R=\operatorname{COPh}(6 \mathrm{~b}$)	PMePh_{2}	$R=\operatorname{CoPh}(6 i)$	PMePh_{2}
(6c)	$\mathrm{PMe}_{2} \mathrm{Ph}$	(6j)	$\mathrm{PMe}_{2} \mathrm{Ph}$
(6d)	PMe_{3}	(6k)	PMe_{3}
(6e)	PEt_{3}	(61)	PEt_{3}
(6f)	PBu_{3}^{n}	(6m)	PBu_{3}^{n}
(6g)	$\mathrm{P}(\mathrm{OPh})_{3}$		
(6n)	$\mathrm{PPh}_{3} ; \mathrm{M}=\mathrm{Pt} ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$		
(60)	$\mathrm{PPh}_{3} ; \mathrm{M}=\mathrm{Pd} ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$		

(7)

(8)
with that of the phenyl substituted platinathietane-3,3-dioxide complex ${ }^{1}$ (1a), single-crystal X-ray diffraction studies have been carried out on the triphenylphosphine-platinum complex (6a). $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the methyldiphenylphosphine-palladium complex ($6 \mathbf{i}$) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The results of the X-ray work are summarised in Tables 1 and 2. The molecular structures of ($\mathbf{6 a}$) and (6i) are illustrated in Figures 1 and 2 respectively. Complex (6a) crystallises with two molecules of dichloromethane per molecule of complex, and complex (6i) crystallises with one molecule of dichloromethane plus one molecule of water per molecule of complex. There are no short intermolecular contacts between the complexes and the solvent molecules.

The structures of ($\mathbf{6 a}$) and ($\mathbf{6 i}$) are very similar to the structure of the related phenyl-substituted platinathietane-3,3dioxide complex (1a). ${ }^{1}$ The co-ordination about the platinum and palladium atoms in (6a) and (6i) is effectively square planar, with the twist angles between the $\mathrm{P}(1)-\mathrm{M}-\mathrm{P}(2)$ and $\mathrm{C}(1)-\mathrm{M}-\mathrm{C}(2)$ planes being $6.48(36)$ for (6a) and $3.47(13)^{\circ}$ for (6i). The four-membered metallathietane-3,3-dioxide rings in (6a) and (6i) are non-planar, the fold angles between the $C(1)-M-C(2)$ and $C(1)-S-C(2)$ planes being $15.3(6)$ and $30.2(2)^{\circ}$ in ($6 \mathbf{a}$) and ($\mathbf{6 i}$) respectively, as compared to 24.6° in the phenyl-substituted complex (1a). ${ }^{\text {' }}$ The fold angles for these metallathietane-3,3-dioxide ring systems lie within the range

Table 1. Selected interatomic bond distances (\AA) for $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad[(6 \mathbf{a})] \quad$ and $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad[(6 \mathrm{i})]$ with estimated standard deviations (e.s.d.s) in parentheses

	$(\mathbf{6 a}), \mathbf{M}=\mathrm{Pt}$	$(\mathbf{6 i}), \mathbf{M}=\mathrm{Pd}$
$\mathrm{M}-\mathrm{P}(1)$	$2.327(3)$	$2.295(1)$
$\mathrm{M}-\mathrm{P}(2)$	$2.285(3)$	$2.311(2)$
$\mathrm{M}-\mathrm{C}(1)$	$2.106(10)$	$2.148(6)$
$\mathrm{M}-\mathrm{C}(2)$	$2.125(11)$	$2.122(6)$
$\mathrm{M} \cdots \mathrm{S}$	$2.840(5)$	$2.770(2)$

$\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})$ ligands		
$\mathrm{C}(1)-\mathrm{S}$	$1.762(11)$	$1.749(5)$
$\mathrm{C}(2)-\mathrm{S}$	$1.755(11)$	$1.738(5)$
$\mathrm{S}-\mathrm{O}(1)$	$1.439(9)$	$1.433(5)$
$\mathrm{S}-\mathrm{O}(2)$	$1.445(8)$	$1.435(4)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.526(16)$	$1.493(6)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.521(15)$	$1.472(7)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.218(14)$	$1.223(6)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1.205(12)$	$1.229(6)$
$\mathrm{C}(3)-\mathrm{C}(81)$	$1.499(14)$	$1.485(6)$
$\mathrm{C}(4)-\mathrm{C}(71)$	$1.516(12)$	$1.502(6)$
$\mathrm{C}(1)-\mathrm{H}(1)$	$0.97(7)$	
$\mathrm{C}(2)-\mathrm{H}(2)$	$0.96(8)$	

Triphenylphosphine ligands (6a)

$\mathrm{P}(2)-\mathrm{C}(11)$	$1.813(6)$
$\mathrm{P}(2)-\mathrm{C}(21)$	$1.830(6)$
$\mathrm{P}(2)-\mathrm{C}(31)$	$1.832(6)$
$\mathrm{P}(1)-\mathrm{C}(41)$	$1.829(6)$
$\mathrm{P}(1)-\mathrm{C}(51)$	$1.840(6)$
$\mathrm{P}(1)-\mathrm{C}(61)$	$1.830(6)$

Methyldiphenylphosphine ligands ($\mathbf{6 i}$)

$\mathrm{P}(1)-\mathrm{C}(5)$	$1.842(6)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.814(3)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.796(3)$
$\mathrm{P}(2)-\mathrm{C}(6)$	$1.830(6)$
$\mathrm{P}(2)-\mathrm{C}(31)$	$1.815(4)$
$\mathrm{P}(2)-\mathrm{C}(41)$	$1.814(5)$

Figure 1. Molecular structure of $\left[\stackrel{\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C}\right.}{\mathrm{C}}(\mathrm{COPh})\right\}-$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right](6 a)$, showing the atom numbering scheme. Atoms are shown as 50% thermal ellipsoids. Triphenylphosphine carbon atoms other than those bonded to phosphorus, and hydrogen atoms of phenyl rings are omitted
of $9-35^{\circ}$ found for thietane-1,1-dioxide, $\stackrel{C-C-C-S}{ }(\mathrm{O})_{2}$ ring systems. ${ }^{5}$ Studies on platinacyclobutane ring systems have established that fold angles in these complexes lie in the range $0-30^{\circ}, 6,7$ whereas metallacyclobutan-3-one complexes of

Figure 2. Molecular structure of $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}-\right.$ $\left.\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ ($\mathbf{6 i}$), showing the atom numbering scheme. Atoms are shown as 50° othermal ellipsoids, and all hydrogen atoms are omitted

Table 2. Selected bond angles $\left({ }^{\circ}\right)$ for $\left\{\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}[(6 \mathrm{aa})]$ and $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}-\right.$ $\left.\left(\mathrm{PMePh}_{2}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}[(6 \mathrm{i})]$, with e.s.d.s in parentheses
$P(1)-M-P(2)$
$P(1)-M-C(2)$
$P(2)-M-C(1)$
$C(1)-M-C(2)$

$(6 a), M=P t$	$(6 i), M=P d$
$98.5(1)$	$97.7(1)$
$91.9(3)$	$94.0(2)$
$94.2(3)$	$93.6(1)$
$75.4(4)$	$74.7(2)$

$\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})$ ligands

$\mathrm{M}-\mathrm{C}(1)-\mathrm{S}$	$94.0(4)$	$90.0(2)$
$\mathrm{M}-\mathrm{C}(2)-\mathrm{S}$	$93.6(5)$	$91.2(2)$
$\mathrm{M}-\mathrm{C}(1)-\mathrm{C}(3)$	$121.8(9)$	$121.2(4)$
$\mathrm{M}-\mathrm{C}(2)-\mathrm{C}(4)$	$116.5(7)$	$106.2(4)$
$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(2)$	$94.8(5)$	$95.9(3)$
$\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(1)$	$113.7(6)$	$110.9(3)$
$\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(2)$	$108.7(6)$	$112.2(2)$
$\mathrm{C}(2)-\mathrm{S}-\mathrm{O}(1)$	$114.1(5)$	$112.8(3)$
$\mathrm{C}(2)-\mathrm{S}-\mathrm{O}(2)$	$106.6(5)$	$107.9(2)$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	$116.6(6)$	$115.4(3)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$122.1(11)$	$122.2(5)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(81)$	$119.0(11)$	$118.1(4)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	$121.0(10)$	$122.2(4)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(71)$	$118.3(9)$	$119.0(4)$

Triphenylphosphine ligands (6a)

$\mathrm{M}-\mathrm{P}(1)-\mathrm{C}(41)$	$122.6(3)$	$\mathrm{M}-\mathrm{P}(1)-\mathrm{C}(5)$	$114.6(2)$
$\mathrm{M}-\mathrm{P}(1)-\mathrm{C}(51)$	$106.2(3)$	$\mathrm{M}-\mathrm{P}(1)-\mathrm{C}(11)$	$115.5(2)$
$\mathrm{M}-\mathrm{P}(1)-\mathrm{C}(61)$	$117.0(3)$	$\mathrm{M}-\mathrm{P}(1)-\mathrm{C}(21)$	$112.9(1)$
$\mathrm{M}-\mathrm{P}(2)-\mathrm{C}(11)$	$114.3(3)$	$\mathrm{M}-\mathrm{P}(2)-\mathrm{C}(6)$	$113.2(2)$
$\mathrm{M}-\mathrm{P}(2)-\mathrm{C}(21)$	$117.6(3)$	$\mathrm{M}-\mathrm{P}(2)-\mathrm{C}(31)$	$109.6(2)$
$\mathrm{M}-\mathrm{P}(2)-\mathrm{C}(31)$	$112.8(3)$	$\mathrm{M}-\mathrm{P}(2)-\mathrm{C}(41)$	$121.0(1)$
$\mathrm{C}(41)-\mathrm{P}(1)-\mathrm{C}(51)$	$103.4(4)$	$\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{C}(11)$	$101.6(2)$
$\mathrm{C}(41)-\mathrm{P}(1)-\mathrm{C}(61)$	$99.8(3)$	$\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{C}(21)$	$106.9(2)$
$\mathrm{C}(51)-\mathrm{P}(1)-\mathrm{C}(61)$	$106.1(4)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	$104.2(2)$
$\mathrm{C}(11)-\mathrm{P}(2)-\mathrm{C}(21)$	$98.9(4)$	$\mathrm{C}(6)-\mathrm{P}(2)-\mathrm{C}(31)$	$105.7(2)$
$\mathrm{C}(11)-\mathrm{P}(2)-\mathrm{C}(31)$	$108.4(4)$	$\mathrm{C}(6)-\mathrm{P}(2)-\mathrm{C}(41)$	$103.9(3)$
$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(31)$	$103.4(4)$	$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{C}(41)$	$101.9(2)$

(9)

(10)

(11)

(12)
platinum(II) and palladium(II) have been shown to contain highly puckered four-membered rings, which may also be described in terms of an η^{3}-allylic arrangement. ${ }^{2,4,8}$ Puckering in four-membered rings results in a decrease in eclipsing strain, concomitant with an increase in angle strain, until a minimum energy balance between the two opposing effects is achieved.

A comparison of the X-ray data of the metallathietane-3,3dioxide complexes (6a), (6i), and (1a) with those for thietane-1,1dioxide systems ${ }^{5}$ reveals that the metallacycles contain shorter $\mathrm{C}-\mathrm{S}$ bond distances and larger $\mathrm{C}-\mathrm{S}-\mathrm{C}$ bond angles. Hence, for thietane-1,1-dioxides the $C-S$ bond distances lie in the range $1.79-1.88 \AA$, and the $\mathrm{C}-\mathrm{S}-\mathrm{C}$ bond angles lie in the range $77.6-82.2^{\circ}$, whereas the corresponding values for the metalla-thietane-3,3-dioxide complexes ($\mathbf{6 a}$), ($\mathbf{6 i} \mathbf{i}$), and (1a) lie in the ranges $1.72-1.76 \AA$ and $92.0-95.9^{\circ}$. These data may be interpreted in terms of a reduction in ring strain of the fourmembered ring system on replacement of carbon by a substantially larger platinum or palladium atom. The presence of ring strain in a cyclic organic molecule often results in lengthening of the ring bonds, as observed for example in cyclobutanes. ${ }^{9}$ The $\mathrm{C}-\mathrm{S}-\mathrm{C}$ bond angle for dimethyl sulphone, which possesses no ring strain, is $103.0^{\circ} .^{10}$

A number of chelating phosphorus and sulphur ylide complexes containing the $\mathrm{MCH}_{2} \mathrm{PMe}_{2} \mathrm{CH}_{2}$ or $\widehat{\mathrm{MCH}}{ }_{2} \mathrm{~S}(\mathrm{O})(\mathrm{Me}) \mathrm{CH}_{2}$ ring systems have been found to contain notably shortened metallacyclic $\mathrm{C}-\mathrm{P}$ and $\mathrm{C}-\mathrm{S}$ bonds. ${ }^{11.12}$ Thus, for example, in the octahedrally co-ordinated cobalt complex (9), ${ }^{11}$ which contains a planar ylide ring, the metallacyclic $\mathbf{C}-\mathbf{P}$ bond distances average $1.726(9) \AA$, as compared with average $\mathrm{C}-\mathrm{P}$ distances in the PMe_{2} group and trimethylphosphine ligands of $1.793(8)$ and $1.799(9) \AA$ respectively. This has been interpreted in terms of a contribution from a planar heteroallylic bonding representation constructed using a phosphorus $d_{x^{2}-y^{2}}$ orbital. However, square-planar cyclic ylide complexes of nickel, palladium, and platinum characteristically contain highly puckered four-membered rings, ${ }^{11,12}$ for example, the fold angles in the dimeric complex (10) are 43.9°, and a contribution to the bonding from an η^{3}-allylic representation
has been proposed to account for this non-planarity. ${ }^{11}$ These non-planar cyclic ylide complexes thus bear a resemblance to the oxodimethylenemethane complexes, described by us, ${ }^{2,4.8}$ which we also consider to contain a large degree of η^{3}-allylic character. Thus the apparent shortening of the $\mathrm{C}-\mathrm{S}$ bonds of the metallathietane-3,3-dioxide complexes ($\mathbf{6 a}$), ($\mathbf{6 i}$), and (1a) may also be attributed to a contribution from a heteroallylic-type bonding representation as shown in (11) or (12).
Interestingly, structural studies on the lithiated sulphones $\left[\mathrm{PhS}(\mathrm{O})_{2} \mathrm{CHRLi} \cdot \mathrm{L}\right]_{2} \quad\left[(13 a), \quad \mathrm{R}=\mathrm{H}, \quad \mathrm{L}=\operatorname{tmen}^{13} \quad(\mathbf{1 3 b})\right.$, $\mathrm{R}=\mathrm{Ph}, \mathrm{L}=$ tmen, ${ }^{14}$ and (13c), $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~L}=$ diglyme $(\text { tmen }=\text { tetramethylethylenediamine) }]^{15}$ reveal that these compounds contain very short S-CH bonds, but the corresponding lengthening of the $\mathrm{S}=\mathrm{O}$ bonds for (13a) and (13b) is of a much smaller magnitude and is undetectable in the case of (13c). Thus, for example, the S-CH bond distance for (13a) of 1.608(3) \AA is much shorter than the S-CH bond distance of the parent methyl phenyl sulphone ($\mathrm{S}-\mathrm{CH}=1.761 \AA$), ${ }^{13}$ and is comparable with the $\mathrm{C}=\mathrm{S}$ bond distance for thioformaldehyde of $1.6108(9) \AA .{ }^{16}$ However, the $\mathrm{S}=\mathrm{O}$ bond distances of (13a) [average $1.460(2) \AA$] are comparable with those of methyl phenyl sulphone [average $1.459 \AA$]..$^{13.17}$ In the metallathietane3,3 -dioxide complexes ($\mathbf{6 a}$), ($\mathbf{6 i}$), and (1a) which show a small degree of $\mathrm{S}-\mathrm{C}$ bond shortening, the $\mathrm{S}=\mathrm{O}$ bond distances appear normal. Thus, the $\mathrm{S}=\mathrm{O}$ bond distances for $(\mathbf{6 a})$ and $(\mathbf{6 i})$ lie within the range $1.411-1.456 \AA$ observed for a number of thietane1,1 -dioxide ring systems. ${ }^{5}$
The platinum-carbon bond distances for (6a) are similar to those in phosphine-containing platinacyclobutanes, for example, the average $\mathrm{Pt}-\mathrm{C}$ bond distances in complexes $\left[\mathrm{Pt}\left\{\mathrm{C}(\mathrm{CN})_{2} \mathrm{CHPhC}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{18}$ and $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]^{7}$ are 2.148 and $2.083 \AA$ respectively. Thus, as a result of the relatively large range of platinumcarbon bond distances in platinacyclobutanes, together with an absence of suitable examples for comparison, it is difficult conclusively to assign any lengthening of the platinum-carbon bonds in the platinathietane-3,3-dioxide complexes, which would result from a heteroallylic contribution to the bonding. A recent study of the σ-alkyl complexes cis-[$\left.\mathrm{MMe}_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ ($\mathrm{M}=\mathrm{Pd}$ or Pt) indicates a shortening of the metal-carbon bond (with a concomitant lengthening of the metal-phosphorus bond) when the metal is changed from platinum to palladium ${ }^{19}$ and a similar trend might be expected in the metallathietane-3,3dioxides ($\mathbf{6 i}$) and ($\mathbf{6 a}$). However, the average $\mathrm{Pd}-\mathrm{C}$ bond length in ($\mathbf{6 i}$) is not significantly different to the average $\mathrm{Pt}-\mathrm{C}$ bond length in (6a). We note that in the η^{3}-benzylic complexes (14) the $\mathrm{Pd}-\mathrm{C}$ bond distances are greater than $\mathrm{Pt}-\mathrm{C}$ bond distances. ${ }^{20}$ A similar trend is observed in η^{3}-oxodimethylenemethane complexes of palladium and platinum, ${ }^{2,4.8}$ the data indicating a greater degree of allylic bonding in palladium as compared to the platinum complexes.
The rings in complexes ($\mathbf{6 a}$) and ($\mathbf{6 i}$) are formed as the 'trans' disubstituted isomers, with one benzoyl substituent in a pseudo axial environment, and the other in a pseudo equatorial environment, as observed in the phenyl substituted complex (1a). ${ }^{1}$ It is worth nothing that as a result of the trans substitution of the metallathietane-3,3-dioxide systems, these molecules are chiral, and an examination of the unit-cell contents for ($\mathbf{6 a}$) reveals that one molecule of both enantiomers co-crystallise from solution in a centrosymmetric unit cell.

The room-temperature ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right.$-decoupled \} n.m.r. spectra of ($\mathbf{6 a}$)-($\mathbf{6 0}$) are similar to those of the related phenylsubstituted metallathietane-3,3-dioxide complexes (1), ${ }^{1}$ and may be interpreted in terms of either a planar, or a rapidly inverting metallacycle. The ${ }^{1} \mathrm{H}$ n.m.r. spectra of all the platinumphosphine or -phosphite complexes appear as the A part of an $\mathrm{AA}^{\prime} \mathrm{MXX}^{\prime}$ spin system ($\mathrm{M}={ }^{195} \mathrm{Pt}, \mathrm{X}={ }^{31} \mathrm{P}$), ${ }^{21}$ to give a complex resonance consisting of an intense inner doublet, a

(14), $M=P t$ or $P d, a c a c=$ acetylacetonate
weaker outer doublet, together with two very weak outer doublets some distance from the centre of the resonance. This second-order spectrum is due to the presence of chemically equivalent but magnetically non-equivalent phosphorus-31 nuclei. Corresponding satellite features due to coupling to platinum-195 are observed, with values of ${ }^{2} J(\mathrm{PtH})$ being typically around 60 Hz . The palladathietane-3,3-dioxide complexes containing phosphine ligands yield similar $\mathrm{Pd}-\mathrm{CH}^{1} \mathrm{H}$ n.m.r. spectral features, although these signals are commonly poorly resolved, giving a broad single resonance from which it was not possible to measure a value of $J(\mathrm{PH})$. Since the carbon atoms of the metallacycle are chiral, and two methyl groups bonded to each phosphorus in the dimethylphenylphosphine complexes ($\mathbf{6 c}$) and ($\mathbf{6 j}$) are chemically non-equivalent (diastereotopic). This feature has also been observed in 1,3disubstituted oxodimethylenemethane complexes of platinum and palladium. ${ }^{2.8}$

The room-temperature ${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathrm{H}\right.$-decoupled $\}$ n.m.r. spectra of the metallathietane-3,3-dioxide complexes ($\mathbf{6 a}$)--(60) exhibit second-order ring carbon signals and appear as the A part of an AXX' spin system $\left(X={ }^{31} \mathrm{P}\right),{ }^{22}$ giving a doublet of doublets with a small central feature, with the platinum complexes showing the expected coupling to platinum-195, with values of ${ }^{1} J(\mathrm{PtC})$ ranging from 354 to 446.2 Hz on changing the phosphine from trimethylphosphine through to triphenylphosphine. The values of ${ }^{1} J(\mathrm{PtC})$ and $\left.\right|^{2} J(\mathrm{PC})_{\text {trans }}+{ }^{2} J(\mathrm{PC})_{c i s}$ are comparable with those of platinacyclobutanes, for example, the complex $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ shows ${ }^{1} J(\mathrm{PtC})=400$ Hz and ${ }^{2} J(\mathrm{PC})=80 \mathrm{~Hz}$. ${ }^{6}$ The carbonyl carbon atoms of the benzoyl substituents of (6a) and (6c) show a coupling to platinum-195, with ${ }^{2} J(\mathrm{PtC})$ being 35 and 32 Hz respectively, although no three-bond phosphorus coupling was discernible. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of the complexes ($\mathbf{6 c}$) and ($\mathbf{6 j}$) containing the dimethylphenylphosphine ligand again demonstrate the chiral nature of the ring carbons, with two sets of methyl resonances being observed.

The room-temperature ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra for all the metallathietane-3,3-dioxide complexes containing phosphine or triphenyl phosphite ligands consist of a single resonance, with the platinum complexes showing the expected coupling to platinum-195, values of ${ }^{1} J(\mathrm{PtP})$ being in the range 2705 2817 Hz for the benzoyl and methoxycarbonyl substituted complexes. The triphenyl phosphite-platinum complex ($\mathbf{6 g}$) shows a large value for ${ }^{1} J(\mathrm{PtP})$ of 4976 Hz .
The i.r. spectra of complexes ($\mathbf{6 a}$)-($\mathbf{6 0}$) exhibit very strong sulphone stretching bands in the ranges $1110-1126 \mathrm{~cm}^{-1}$ and $1290-1310 \mathrm{~cm}^{-1}$.

Experimental

Melting points (Table 3) were measured in air on a Reichert hotstage apparatus and are uncorrected. Infrared spectra were recorded as KBr discs on a Perkin-Elmer 580 spectrophotometer. Proton n.m.r. spectra were recorded on a Varian EM390 spectrometer at 90 MHz , on a Bruker AM300 spectrometer at 300.13 MHz , and on a Bruker Spectrospin WH 400 spectrometer at 400.13 MHz with SiMe_{4} (0.0 p.p.m.) as internal reference, positive values being to high frequency (low-field), in CDCl_{3} unless otherwise stated. ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathbf{H}\right\}$ N.m.r. spectra were recorded on a Bruker AM300 spectrometer at 75.47 MHz with

Table 3. Yields, m.p.s, analytical, ${ }^{a}$ and selected i.r. data for benzoyl and methoxycarbonyl substituted metallathietane-3,3-dioxide complexes

Complex	Analysis (\%)				
	Yield (\%)	M.p. (${ }^{\circ} \mathrm{C}$)	C	H	$\begin{aligned} & v\left(\mathrm{SO}_{2}\right) \\ & \left(\mathrm{cm}^{-1}\right)^{b} \end{aligned}$
(6a) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	77	185-190 ${ }^{\text {c }}$	$\begin{gathered} 56.9 \\ (57.2) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.1) \end{gathered}$	1295,1118
(6b) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	76	$153-161^{\text {d }}$	$\begin{gathered} 51.7 \\ (52.2) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.2) \end{gathered}$	1295,1115
(6c) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	71	$111-116^{\text {d }}$	$\begin{gathered} 45.8 \\ (46.3) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.2) \end{gathered}$	1292,1112
(6d)	71	$>230^{\circ}$	$\begin{gathered} 41.1 \\ (40.8) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.7) \end{gathered}$	1292,1111
(6e). $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	81	218-222 ${ }^{f}$	$\begin{gathered} 44.4 \\ (44.2) \end{gathered}$	$\begin{gathered} 5.7 \\ (5.6) \end{gathered}$	1295,1118
(6f)	77	171-172	$\begin{gathered} 53.1 \\ (53.6) \end{gathered}$	$\begin{gathered} 7.4 \\ (7.6) \end{gathered}$	1294,1117
(6g)	36	74-82	$\begin{gathered} 55.4 \\ (56.0) \end{gathered}$	$\begin{gathered} 3.85 \\ (3.8) \end{gathered}$	1310,1126
(6h) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	94	220-222 ${ }^{f}$	$\begin{gathered} 61.2 \\ (61.5) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.5) \end{gathered}$	1300,1112
(6i)	88	$222-224^{9}$	$\begin{gathered} 62.1 \\ (62.5) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.8) \end{gathered}$	1296,1112
(6j) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	94	103-106 ${ }^{\text {d }}$	$\begin{gathered} 51.7 \\ (51.6) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.8) \end{gathered}$	1297,1115
(6k)	92	222-225 ${ }^{\text {f }}$	$\begin{gathered} 46.8 \\ (47.3) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.4) \end{gathered}$	1293,1110
(61)	77	211-213 ${ }^{\text {f }}$	$\begin{gathered} 51.5 \\ (52.3) \end{gathered}$	$\begin{gathered} 6.5 \\ (6.6) \end{gathered}$	1295,1116
(6m)	76	158-160	$\begin{gathered} 59.3 \\ (59.2) \end{gathered}$	$\begin{gathered} 8.3 \\ (8.2) \end{gathered}$	1297,1116
($6 \mathbf{n}$) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	70	$>230^{e}$	$\begin{gathered} 51.7 \\ (51.0) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.0) \end{gathered}$	1290,1120
(60) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	68	217-219 ${ }^{\text {f }}$	$\begin{gathered} 56.4 \\ (55.9) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.4) \end{gathered}$	1310,1120

${ }^{a}$ Calculated values given in parentheses. ${ }^{b}$ All bands vs (very strong).
${ }^{\text {c }}$ Partial melting $155-165^{\circ} \mathrm{C}$ with gas evolution. ${ }^{d}$ With gas evolution.
${ }^{e}$ Decomposition above $230{ }^{\circ} \mathrm{C}$. ${ }^{f}$ With decomposition. ${ }^{g}$ Partial melting from 151 to $160^{\circ} \mathrm{C}$.
SiMe_{4} (0.0 p.p.m.) as internal reference, in $\mathrm{CDCl}_{3} .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ N.m.r. spectra were recorded in dichloromethane on a JEOLFX60 spectrometer at 24.15 MHz with $\left[\mathrm{P}(\mathrm{OH})_{4}\right]^{+23}$ in $\mathrm{D}_{2} \mathrm{O}$ (0.0 p.p.m.) as external reference. J values in Hz .

Experiments were carried out under a dry, oxygen-free, dinitrogen atmosphere, using solvents which were dried and distilled under nitrogen prior to use. Light petroleum refers to the fraction of b.p. $40-60^{\circ} \mathrm{C}$. The metallathietane-3,3-dioxide complexes ($6 \mathbf{a}$)-($\mathbf{6 0}$) were recrystallised in air. The compounds $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]($ cod $=$ cyclo-octa-1,5-diene $),{ }^{24}\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right],{ }^{25}$ trimethylphosphine, ${ }^{26}$ bis(benzoylmethyl) sulphone (5a), ${ }^{27}$ 2, 2^{\prime} sulphonyldiacetic acid dimethyl ester (5b), ${ }^{28}$ and 1,5 -diphenyl-pentane-1,3,5-trione (7) ${ }^{29}$ were prepared as described in the literature.
Analytical and i.r. data, melting points, and yields for the metallathietane-3,3-dioxide complexes are given in Table 3.

Preparation of Metallathietane-3,3-dioxide Complexes using Silver(I) Oxide; General Method.-Two equivalents of tertiary phosphine or triphenyl phosphite, followed by one equivalent of bis(benzoylmethyl) sulphone (5a) or $2,2^{\prime}$-sulphonyldiacetic acid dimethyl ester ($\mathbf{5 b}$), and an excess of silver(I) oxide were added in succession to a stirred solution of $\left[\mathrm{MCl}_{2}(\operatorname{cod})\right]$ ($\mathrm{M}=$ Pt or Pd) in dichloromethane ($\mathrm{ca} .30 \mathrm{~cm}^{3}$), and the mixiure was refluxed for 4 h . The mixture was filtered and the filtrate evaporated to dryness under reduced pressure to afford a colourless to yellowish brown oil. Dissolution of the oil in
dichloromethane (ca. $5 \mathrm{~cm}^{3}$) followed by addition of light petroleum afforded, on standing, a white to pale yellow microcrystalline solid, which was recrystallised from dichloro-methane-light petroleum, and dried in vacuo.
(i) $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. $0.5 \mathrm{H}_{2} \mathrm{O}$; (6 a$) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$. The complex $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ $(0.10 \mathrm{~g}, 0.27 \mathrm{mmol})$ with triphenylphosphine $(0.15 \mathrm{~g}, 0.57 \mathrm{mmol})$ and (5a) $(0.082 \mathrm{~g}, 0.27 \mathrm{mmol})$ gave white microcrystals of (6a) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}(0.23 \mathrm{~g})$. N.m.r. spectra: ${ }^{1} \mathrm{H}(300 \mathrm{MHz}), \delta$ 7.5-6.9(m, $40 \mathrm{H}, \mathrm{Ph}), 5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 4.86$ [d, secondorder, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{CH}, \mid{ }^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis $\mid 9.20,{ }^{2} J(\mathrm{PtH})$ 61.79], and 1.81 p.p.m. (s, br, $1 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75.5 \mathrm{MHz}$), $\delta 196.30$ [s, CO, ${ }^{2} J(\mathrm{PtC}) 35.0$], 54.58 [dd, second-order, $\mathrm{Pt}-\mathrm{CH}$, $\left.\right|^{2} J(\mathrm{PC})$ trans $+{ }^{2} J(\mathrm{PC})$ cis \mid 87.08, $\left.{ }^{1} J(\mathrm{PtC}) 446.2\right]$, and 53.4 p.p.m. (s, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta 13.31$ p.p.m. [s, $\left.{ }^{1} J(\mathrm{PtP}) 2817\right]$. X-Ray quality crystals of ($6 \mathbf{6}$) $\cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were grown slowly from dichloromethane-light petroleum, in air.
(ii) $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. $0.5 \mathrm{H}_{2} \mathrm{O} ;(\mathbf{6 b}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$. The complex $\left[\mathrm{PtCl}_{2}(\right.$ cod $\left.)\right]$ (0.12 $\mathrm{g}, 0.32 \mathrm{mmol})$ with methyldiphenylphosphine $(0.13 \mathrm{~g}, 0.65$ $\mathrm{mmol})$ and ($5 \mathbf{5}$) $(0.098 \mathrm{~g}, 0.33 \mathrm{mmol})$ gave white microcrystals of ($\mathbf{6 b}$) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}(0.241 \mathrm{~g})$. N.m.r. spectra: ${ }^{1} \mathrm{H}(300 \mathrm{MHz}), \delta$ $7.80-7.00(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 5.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 4.80$ [d, secondorder, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{CH}, \mid{ }^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis $\mid 9.0,{ }^{2} J(\mathrm{PtH})$ 59.9], 2.08 p.p.m. (s, br, $1 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$), and 1.62 p.p.m. [d, secondorder, $6 \mathrm{H}, \mathrm{Me}, \mathrm{PMePh}_{2},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 8.55,{ }^{3} J(\mathrm{PtH})$ 29.3]; ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-90^{\circ} \mathrm{C}\right)$ identical to room temperature spectrum; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75.5 \mathrm{MHz}), \delta 196.20[\mathrm{~s}, \mathrm{CO}$, ${ }^{2} J(\mathrm{PtC})$ not discernible], 55.45 [dd, second-order, $\mathrm{Pt}-\mathrm{CH}$, $\left.\right|^{2} J(\mathrm{PC})$ trans $+{ }^{2} J(\mathrm{PC})$ cis \mid 84.96, $\left.{ }^{1} J(\mathrm{PtC}) 412.5\right], 53.4$ (s, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and 13.54 p.p.m. [dd, second-order, $\mathrm{Me}, \mathrm{PMePh}_{2}$, $\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 46.3,{ }^{2} J(\mathrm{PtC})$ not discernible $;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ $(24 \mathrm{MHz}), \delta-4.24$ p.p.m. $\left[\mathrm{s},{ }^{1} J(\mathrm{PtP}) 2759\right]$.
(iii) $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (6c). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right](0.25 \mathrm{~g}, 0.67 \mathrm{mmol})$ with dimethylphenylphosphine ($0.19 \mathrm{~g}, 1.37 \mathrm{mmol}$) and (5a) $(0.20 \mathrm{~g}, 0.67 \mathrm{mmol})$ gave white microcrystals of (6 c) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.41 \mathrm{~g})$. N.m.r. spectra: ${ }^{1} \mathrm{H}(300 \mathrm{MHz}), \delta 8.06-7.27(\mathrm{~m}, 20 \mathrm{H}$, Ph), 5.34 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), 4.89 [d, second-order, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{CH}$, $\mid{ }^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis \mid ca. $\left.9,{ }^{2} J(\mathrm{PtH}) 60.06\right], 1.48$ [d, second-order, $6 \mathrm{H}, \mathrm{Me}, \mathrm{PMe}_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 9.34$, ${ }^{3} J(\mathrm{PH}) 30.2$], and 1.26 p.p.m. [d, second-order, $6 \mathrm{H}, \mathrm{Me}$, $\left.\mathrm{PMe}_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 9.41,{ }^{3} J(\mathrm{PtH}) 28.7\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ (75.5 MHz), $\delta 197.23$ [s, CO, $\left.{ }^{2} J(\mathrm{PtC}) 32.0\right], 55.31$ [dd, secondorder, $\mathrm{Pt}-\mathrm{CH}, \mid{ }^{2} J(\mathrm{PC})$ trans $+{ }^{2} J(\mathrm{PC})$ cis $\left.\mid 84.39,{ }^{1} J(\mathrm{PtC}) 384.5\right]$, 15.92 [dd, second-order, $\mathrm{Me}, \mathrm{PMe}_{2} \mathrm{Ph},\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 48.0$, ${ }^{2} J(\mathrm{PtC})$ not discernible], and 14.34 p.p.m. [dd, second-order, $\mathrm{Me}, \quad \mathrm{PMe}_{2} \mathrm{Ph}, \quad\left|{ }^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC})\right| \quad 46.75, \quad{ }^{2} J(\mathrm{PtC})$ not discernible]; ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta-17.95$ p.p.m. $\left[\mathrm{s},{ }^{1} J(\operatorname{PtP})\right.$ $2734]$.
(iv) $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PMe}_{3}\right)_{2}\right] ;(6 \mathrm{~d})$. The complex $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right](0.15 \mathrm{~g}, 0.401 \mathrm{mmol})$ with trimethylphosphine ($0.1 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}$) and ($5 \mathrm{5a}$) $(0.121 \mathrm{~g}, 0.401 \mathrm{mmol})$ gave white microcrystals of ($\mathbf{6 d}$) $\left(0.184\right.$ g). N.m.r. spectra: ${ }^{1} \mathrm{H}$ (400 MHz), $\delta 8.12-7.37(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 4.80$ [d, second-order, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{CH},\left.\right|^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis $\left.\mid 9.57,{ }^{2} J(\mathrm{PtH}) 58.06\right]$, and 1.41 p.p.m. [d, second-order, $18 \mathrm{H}, \mathrm{Me}, \mathrm{PMe}_{3},\left.\right|^{2} J(\mathrm{PH})+$ $\left.{ }^{4} J(\mathrm{PH}) \mid 9.44,{ }^{3} J(\mathrm{PtH}) 29.55\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75.5 \mathrm{MHz}), \delta 197.52$ [s, CO, ${ }^{2} J(\mathrm{PtC})$ not discernible], 55.10 [dd, second-order, $\mathrm{Pt}-\mathrm{CH},\left.\right|^{2} J(\mathrm{PC})$ trans $+{ }^{2} J(\mathrm{PC}) c i s \mid 84.59,{ }^{1} J(\mathrm{PtC})$ ca. 354], and 16.97 p.p.m. [dd, second-order, $\mathrm{Me}, \mathrm{PMe}_{3},\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid$ $47.6,{ }^{2} J(\mathrm{PtC})$ not discernible]; ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta-28.84$ p.p.m. [s, $\left.{ }^{1} J(\mathrm{PtP}) 2705\right]$.
(v) $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PEt}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (6 e$) \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0.21 \mathrm{~g}, 0.56 \mathrm{mmol})$ with triethylphosphine ($0.14 \mathrm{~g}, 1.18 \mathrm{mmol}$) and (5 Fa) ($0.17 \mathrm{~g}, 0.57$ $\mathrm{mmol})$ gave white microcrystals of ($\mathbf{6 e}$) $\cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.35 \mathrm{~g})$.
N.m.r. spectra: ${ }^{1} \mathrm{H}(300 \mathrm{MHz}), \delta 8.20-7.35(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.25$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 4.62 [d, second-order, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{CH}$, $\left.\right|^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis $\left.\mid 9.0,{ }^{2} J(\mathrm{PtH}) 69.2\right], 1.71(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{CH}_{2}, \mathrm{PEt}_{3}\right)$, and 0.99 p.p.m. (m, $\left.18 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{PEt}_{3}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24$ $\mathrm{MHz}), \delta 2.42 \mathrm{p} . \mathrm{p} . \mathrm{m} .\left[\mathrm{s},{ }^{1} J(\mathrm{PtP}) 2739\right]$.
(vi) $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PBu}^{\mathrm{n}}\right)_{2}\right]$; (6f). The complex $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0.20 \mathrm{~g}, 0.535 \mathrm{mmol})$ with $\mathrm{PBu}^{n}{ }_{3}(0.22 \mathrm{~g}$, $1.09 \mathrm{mmol})$ and (5a) ($0.162 \mathrm{~g}, 0.536 \mathrm{mmol}$) gave white microcrystals of (6 f $)\left(0.37\right.$ g). N.m.r. spectra: ${ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta$ $8.33-7.31(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 4.58$ [d, second-order, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{CH}$, $\left.\right|^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis \mid ca. $\left.9,{ }^{2} J(\mathrm{PtH}) 59.0\right], 1.80-1.09$ ($\mathrm{m}, 36 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{PBu}^{\mathrm{n}}$), and 0.81 p.p.m. $\left[\mathrm{t}, 18 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{PBu}^{\mathrm{n}}{ }_{3}\right.$, $\left.{ }^{3} J(\mathrm{HH}) 7.14\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta-6.25$ p.p.m. [s, ${ }^{1} J(\mathrm{PtP})$ $2725]$.
(vii) $\left.\left[\overrightarrow{\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C}\right.} \mathrm{H}(\mathrm{COPh})\right\}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right] ;(6 \mathrm{~g})$. The complex $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right](0.225 \mathrm{~g}, 0.60 \mathrm{mmol})$ with triphenyl phosphite ($0.38 \mathrm{~g}, 1.22 \mathrm{mmol}$) and ($5 \mathbf{5 a}$) $(0.181 \mathrm{~g}, 0.60 \mathrm{mmol})$ gave white microcrystals of ($\mathbf{6 g}$) (0.24). N.m.r. spectra: ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$, $\delta 8.02-6.83(\mathrm{~m}, 40 \mathrm{H}, \mathrm{Ph})$, and 4.60 p.p.m. [d, second-order, 2 $\mathrm{H}, \mathrm{Pt}-\mathrm{CH}, \mid{ }^{3} J(\mathrm{PH})$ trans $\left.+{ }^{3} J(\mathrm{PH}) c i s \mid c a .10,{ }^{2} J(\mathrm{PtH}) 70.1\right] ;$ ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta 95.20$ p.p.m. [s, $\left.{ }^{1} J(\mathrm{PtP}) 4976\right]$.
(viii) $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\mathrm{H}_{2} \mathrm{O} ;(\mathbf{6 h}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The complex $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right](0.20 \mathrm{~g}$, $0.70 \mathrm{mmol})$ with triphenylphosphine $(0.367 \mathrm{~g}, 1.40 \mathrm{mmol})$ and (5a) $(0.211 \mathrm{~g}, 0.70 \mathrm{mmol})$ gave pale yellow microcrystals of ($\mathbf{6 h}$) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.68 \mathrm{~g})$. N.m.r. spectra: ${ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta$ $7.68-6.97(\mathrm{~m}, 40 \mathrm{H}, \mathrm{Ph}), 5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 4.86$ [d, secondorder, $2 \mathrm{H}, \mathrm{Pd}-\mathrm{CH},\left.\right|^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis $\left.\mid 9.83\right]$, and 1.90 (s, br $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75.5 \mathrm{MHz}), \delta 196.13$ (s, CO) and 52.15 p.p.m. [dd, second-order, $\mathrm{Pd}-\mathrm{CH}, 1^{2} J(\mathrm{PC})$ trans + $\left.{ }^{2} J(\mathrm{PC}) c i s \mid 100.61\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta 22.79$ p.p.m. (s).
(ix) $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}\left(\mathrm{PMePh}_{2}\right)_{2}\right] ;$ (6i). The complex $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right](0.10 \mathrm{~g}, 0.35 \mathrm{mmol})$ with methyldiphenylphosphine ($0.15 \mathrm{~g}, 0.75 \mathrm{mmol}$) and (5a) $(0.105 \mathrm{~g} .0 .35$ mmol) gave pale yellow microcrystals of ($\mathbf{6 i}$) $(0.247 \mathrm{~g})$. N.m.r. spectra: ${ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta 7.58-6.98(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 4.39$ [d, second-order, unresolved, $2 \mathrm{H}, \mathrm{Pd}-\mathrm{CH},\left.\right|^{3} J(\mathrm{PH})$ trans + ${ }^{3} J(\mathrm{PH})$ cis \mid not discernible], and 1.43 p.p.m. [d, second-order, $\left.6 \mathrm{H}, \mathrm{Me}, \mathrm{PMePh}_{2},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 7.7\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(100$ MHz) , $\delta 195.43$ (s, CO), 52.45 [dd, second-order, Pd-CH, $\left.\right|^{2} J(\mathrm{PC})$ trans $\left.+{ }^{2} J(\mathrm{PC}) c i s \mid 104.08\right]$, and 12.00 p.p.m. [t, Me, $\left.\mathrm{PMePh}_{2}, \quad\left|{ }^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC})\right| 27.2\right] ; \quad{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \quad(24 \mathrm{MHz}$, CDCl_{3}), $\delta 4.64$ p.p.m. (s). X-Ray quality crystals of (6i). $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ were grown slowly from dichloromethane-light petroleum, in air
(x) $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$; $(\mathbf{6 j}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right](0.15 \mathrm{~g}, 0.525 \mathrm{mmol})$ with dimethylphenylphosphine ($0.19 \mathrm{~g}, 1.37 \mathrm{mmol}$) and (5a) $\left(0.158 \mathrm{~g}, 0.527 \mathrm{mmol}\right.$) gave white microcrystals of $(6 \mathbf{i}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(0.38\right.$ g). N.m.r. spectra: ${ }^{1} \mathrm{H}(300 \mathrm{MHz}), \delta 8.20-7.18(\mathrm{~m}, 20 \mathrm{H}$, $\mathrm{Ph}), 5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 4.47$ [d , second-order, unresolved, $2 \mathrm{H}, \mathrm{Pd}-\mathrm{CH},\left.\right|^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis \mid not discernible], 1.34 [d, second-order, $\left.6 \mathrm{H}, \mathrm{Me}, \mathrm{PMe}_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 9.05\right]$, and 1.05 p.p.m. [d, second-order, $6 \mathrm{H}, \mathrm{Me}, \mathrm{PMe}_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+$ $\left.{ }^{4} J(\mathrm{PH}) \mid 8.88\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta-7.87$ p.p.m. (s).
(xi) $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PMe}_{3}\right)_{2}\right] ;(6 \mathbf{k})$. The complex $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right](0.10 \mathrm{~g}, 0.35 \mathrm{mmol})$ with trimethylphosphine ($0.1 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}$) and ($5 \mathbf{5 a}$) $(0.106 \mathrm{~g}, 0.351 \mathrm{mmol})$ gave white microcrystals of $(\mathbf{6 k})(0.18 \mathrm{~g})$. N.m.r. spectra: ${ }^{1} \mathrm{H}(300 \mathrm{MHz}), \delta 8.06-7.37(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 4.33[\mathrm{~d}$, second-order, unresolved, $2 \mathrm{H}, \mathrm{Pd}-\mathrm{CH},\left.\right|^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis \mid not discernible], and 1.23 p.p.m. [d, second-order, $18 \mathrm{H}, \mathrm{Me}, \mathrm{PMe}_{3}$, $\left.\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 8.9\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta-18.35$ p.p.m. (s).
(xii) $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}\left(\mathrm{PEt}_{3}\right)_{2}\right] ;(6 \mathbf{l})$. The complex $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right](0.20 \mathrm{~g}, 0.70 \mathrm{mmol})$ with triethyl-
phosphine $(0.20 \mathrm{~g}, 1.69 \mathrm{mmol})$ and ($\mathbf{5 a}$) $(0.21 \mathrm{~g}, 0.7 \mathrm{mmol})$ gave white microcrystals of ($6 \mathbf{l})(0.34 \mathrm{~g})$. N.m.r. spectra: ${ }^{1} \mathrm{H}(400$ MHz), $\delta 8.15-7.43(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 4.19$ [d, second-order, 2 H , $\mathrm{Pd}-\mathrm{CH},\left.\right|^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis $\left.\mid c a .8 .6\right], 1.77-1.54(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{PEt}_{3}$), and 1.05 p.p.m. (m, $18 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{PEt}_{3}$); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(24 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 13.92$ (s).
(xiii) $\quad\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PBu}^{\mathrm{n}}\right)_{2}\right] ; \quad(6 \mathrm{~m})$. The complex $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right](0.10 \mathrm{~g}, 0.35 \mathrm{mmol})$ with $\mathrm{PBu}_{3}{ }_{3}$ $(0.22 \mathrm{~g}, 1.09 \mathrm{mmol})$ and $(5 \mathrm{a})(0.106 \mathrm{~g}, 0.351 \mathrm{mmol})$ gave white microcrystals of $(\mathbf{6 m})(0.26 \mathrm{~g})$. N.m.r. spectrum: ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ (24 MHz), $\delta 5.45$ p.p.m. (s).
(xiv) $\quad\left[\mathrm{Pt}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;(\mathbf{6 n}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0.10 \mathrm{~g}, 0.27$ mmol) with triphenylphosphine ($0.15 \mathrm{~g}, 0.57 \mathrm{mmol}$) and ($\mathbf{5 b}$) $(0.056 \mathrm{~g}, 0.27 \mathrm{mmol})$ gave white microcrystals of $(\mathbf{6 n}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.19 \mathrm{~g})$. N.m.r. spectra: ${ }^{1} \mathrm{H}(90 \mathrm{MHz}), \delta 7.8-7.5(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph})$, $5.3\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 3.8$ [d, second-order, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{CH}$, $\left.\right|^{3} J(\mathrm{PH})$ trans $+{ }^{3} J(\mathrm{PH})$ cis \mid ca. $\left.9.5,{ }^{2} J(\mathrm{PtH}) 65\right]$, and 3.1 p.p.m. (s, $6 \mathrm{H}, \mathrm{Me}) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta 14.52$ p.p.m. $\left[\mathrm{s},{ }^{1} J(\mathrm{PtP})\right.$ $2798]$.
(xv) $\quad\left[\mathrm{Pd}\left\{\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} ~\left(~ H ~\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\right.$. $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;(\mathbf{6 o}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right](0.10 \mathrm{~g}, 0.35$ mmol) with triphenylphosphine ($0.184 \mathrm{~g}, 0.70 \mathrm{mmol}$) and ($\mathbf{5 b}$) $(0.065 \mathrm{~g}, 0.35 \mathrm{mmol})$ gave white microcrystals of (60) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.22 g). N.m.r. spectrum: ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24 \mathrm{MHz}), \delta 25.01$ p.p.m. (s).

Reaction of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with (7) and Silver (1) Oxide.-Triphenylphosphine ($0.150 \mathrm{~g}, 0.573 \mathrm{mmol}$), 1,5-diphenylpentan-$1,3,5$-trione ($0.070 \mathrm{~g}, 0.267 \mathrm{mmol}$), and silver(I) oxide (0.4 g , 1.73 mmol) were added in succession to a stirred solution of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0.10 \mathrm{~g}, 0.267 \mathrm{mmol})$ in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$, and the mixture was refluxed for 1 h . The insoluble silver salts were removed by filtration to give a bright yellow solution which was reduced in volume to $c a .3 \mathrm{~cm}^{3}$. Addition of light petroleum ($60 \mathrm{~cm}^{3}$) gave a yellow solid which was filtered off and dried in cacuo to give the complex $\left[\mathrm{Pt}\{\mathrm{OC}(\mathrm{CHCOPh}) \mathrm{CHC}(\mathrm{Ph}) \mathrm{O}\}\left(\mathrm{PPh}_{3}\right)_{2}\right](8)(0.216 \mathrm{~g}, 83 \%)$, identified by comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra with those of an authentic sample. ${ }^{4}{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ N.m.r. data $(24 \mathrm{MHz})$, second-order AB spin-system, $\delta 14.22\left[\mathrm{~d},{ }^{1} J(\mathrm{PtP})\right.$ $\left.3799,{ }^{2} J(\mathrm{PP}) 29.3\right]$ and 8.27 p.p.m. [d, ${ }^{1} J(\mathrm{PtP}) 3701,{ }^{2} J(\mathrm{PP})$ 29.3].

X-Ray. Crystal Structures.-(a) $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H-\right.\right.$ $\left.(\mathrm{COPh})_{j}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2},(\mathbf{6 a}) \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crystal was mounted in air. The unit-cell dimensions of the crystal were determined from oscillation photographs about the c axis and from its optimised counter angles for zero- and upper-layer reflections on a Weissenberg diffractomer. Intensity data were collected at room temperature on a Stoe Stadi-2 Weissenberg diffractometer using an ω-scan technique in the range $7<20<$ 54°. The 5553 unique reflections, collected from Weissenberg layers $h k(0-12)$, having $I \geqslant 3 \sigma(I)$, were corrected for Lorentz and polarisation effects. An absorption correction was also applied to the data, the maximum and minimum transmission factors being 0.8094 and 0.6391 respectively. All subsequent computations were carried out using the computer program SHELX. ${ }^{30}$

Crystal clata. $\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PtS} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=1189.8$, triclinic, space group $P \overline{1}, a=20.835(2), b=10.628(2), c=$ $12.577(4) \AA, \alpha=109.6(1), \beta=105.8(1), \gamma=91.4(1)^{\circ}, \quad U=$ $2501.97 \AA^{3}, Z=2, \quad D_{\mathrm{c}}=1.36 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=1155.9$, Mo- $K_{\alpha} X$-radiation, $\lambda=0.71069 \AA, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=30.16 \mathrm{~cm}^{-1}$.

The structure was solved by conventional Patterson and difference Fourier techniques. Scattering factors were taken from ref. 31. In the final stages of block-matrix least-squares refinement all non-hydrogen atoms, with the exception of the

Table 4. Atomic positional parameters (fractional co-ordinates) for $\left[\mathrm{Pt}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{CH}(\mathrm{COPh})\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6a) with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
Pt	0.239 99(2)	0.089 19(5)	$0.41287(4)$	$\mathrm{C}(42)$	$0.1396(4)$	0.222 4(7)	$0.1060(6)$
$\mathrm{P}(1)$	$0.15570(14)$	0.046 82(28)	$0.23563(26)$	C(43)	$0.1469(4)$	0.261 6(7)	0.0142 (6)
$\mathrm{P}(2)$	0.326 88(14)	$0.16754(28)$	0.365 27(27)	C(44)	$0.1808(4)$	$0.1868(7)$	-0.062 4(6)
S(1)	$0.22553(15)$	0.096 6(3)	0.633 35(28)	C(45)	0.2075 (4)	0.0728 (7)	-0.047 1(6)
$\mathrm{O}(1)$	0.2354 (4)	$0.0084(9)$	0.7001 (8)	C(46)	$0.2002(4)$	0.033 6(7)	0.0447 (6)
$\mathrm{O}(2)$	$0.2019(4)$	0.2228 (8)	0.684 9(8)	C(51)	0.084 3(3)	0.127 6(7)	0.275 5(7)
$\mathrm{O}(3)$	$0.2130(5)$	0.368 5(9)	$0.6415(8)$	C(52)	0.017 4(3)	0.0687 (7)	0.222 6(7)
$\mathrm{O}(4)$	0.2010 (4)	-0.1983(8)	0.467 6(8)	C(53)	-0.033 4(3)	0.1346 (7)	0.2617 (7)
C(1)	0.2961 (5)	0.129 6(13)	0.590 7(9)	C(54)	-0.0173(3)	0.259 4(7)	0.353 9(7)
C(2)	$0.1719(5)$	0.0217 (12)	0.4880 (10)	C(55)	0.049 6(3)	0.318 2(7)	0.406 8(7)
C(3)	03300 (6)	$0.2713(13)$	0.6719 (11)	C(56)	$0.1004(3)$	0.252 4(7)	$0.3677(7)$
C(4)	0.1564 (6)	--0.1297(11)	0.454 3(10)	C(61)	0.122 5(3)	-0.129 2(5)	0.1450 0(6)
C(5)	0.653 9(9)	0.247 6(22)	0.3523 (17)	C(62)	0.072 0(3)	-0.160 3(5)	0.037 5(6)
C(6)	0.776 4(11)	0.447 2(21)	$0.2465(22)$	C(63)	0.046 6(3)	-0.294 4(5)	-0.031 7(6)
C(11)	$0.3563(4)$	0.0409 (6)	0.257 9(6)	C(64)	0.071 6(3)	-0.397 4(5)	$0.0065(6)$
C(12)	0.323 5(4)	$-0.0907(6)$	$0.2067(6)$	C(65)	0.122 1(3)	-0.366 3(5)	$0.1139(6)$
C(13)	0.347 5(4)	-0.189 4(6)	0.1271 (6)	C(66)	0.147 6(3)	-0.232 2(5)	$0.1832(6)$
C(14)	0.404 2(4)	-0.156 4(6)	0.098 6(6)	C(71)	0.083 4(3)	-0.192 3(8)	0.403 4(8)
C(15)	$0.4371(4)$	-0.024 7(6)	0.1498 (6)	C(72)	0.0300 (3)	-0.116 5(8)	0.3902 (8)
C(16)	0.4131 (4)	0.0740 (6)	$0.2294(6)$	C(73)	-0.0360 (3)	-0.1807(8)	0.3388 (8)
C(21)	0.4070 (3)	$0.2339(7)$	0.4823 (6)	C(74)	-0.0487(8)	-0.3207(8)	$0.3305(8)$
C(22)	0.4390 0(3)	$0.1428(7)$	$0.5300(6)$	C(75)	0.004 6(3)	-0.396 6(8)	$0.3137(8)$
C(23)	0.4998 (3)	$0.1858(7)$	0.6207 (6)	C(76)	0.0707 (3)	-0.332 3(8)	0.3651 (8)
C(24)	0.5287 (3)	$0.3198(7)$	0.663 7(6)	C(81)	0.371 6(4)	0.293 4(9)	0.7960 (6)
C(25)	0.4967 (3)	$0.4110(7)$	0.6159 (6)	$\mathrm{C}(82)$	0.385 3(4)	$0.1855(9)$	0.834 6(6)
C(26)	0.4359 (3)	0.3680 (7)	0.525 2(6)	C(83)	$0.4196(4)$	$0.2095(9)$	0.953 O(6)
C(31)	0.307 3(4)	$0.3070(6)$	$0.3121(6)$	$\mathrm{C}(84)$	$0.4402(4)$	$0.3415(9)$	1.0328 (6)
C(32)	$0.3214(4)$	0.317 4(6)	0.2129 (6)	C(85)	0.4266 (4)	0.449 3(9)	$0.9942(6)$
C(33)	$0.3078(4)$	$0.4308(6)$	0.182 5(6)	C(86)	0.392 3(4)	0.4253 (9)	0.875 8(6)
C(34)	$0.2802(4)$	$0.5338(6)$	0.2513 (6)	$\mathrm{Cl}(1)$	0.597 83(29)	$0.2108(7)$	0.415 2(6)
C(35)	0.266 2(4)	0.523 4(6)	$0.3505(6)$	$\mathrm{Cl}(2)$	0.615 6(4)	0.202 2(7)	0.1975 (6)
C(36)	$0.2797(4)$	0.410 O(6)	$0.3809(6)$	$\mathrm{Cl}(3)$	0.8104 (3)	0.3914 (8)	$0.3662(8)$
$\mathrm{C}(41)$	0.1663 (4)	$0.1084(7)$	0.1213 (6)	$\mathrm{Cl}(4)$	$0.8078(4)$	0.382 4(9)	0.132 2(8)

Table 5. Atomic positional parameters (fractional co-ordinates) for $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(6 \mathrm{c})$ with e.s.d.s in parentheses

Atom	x	y	$=$	Atom	x	y	z
Pd	0.50041 (3)	$0.20738(3)$	0.314 23(3)	$\mathrm{C}(26)$	0.4589 (3)	$0.32093(24)$	$0.00821(25)$
S	$0.41165(11)$	$0.25216(11)$	$0.48013(12)$	C(31)	0.757 66(29)	0.309 94(26)	0.3290 (4)
$\mathrm{P}(1)$	$0.42123(10)$	0.136 29(9)	$0.16159(11)$	C(32)	0.863 09(29)	0.309 98(26)	0.387 1(4)
$\mathrm{P}(2)$	0.674 68(11)	$0.19428(11)$	$0.31104(13)$	C(33)	0.924 21(29)	$0.40047(26)$	0.399 4(4)
$\mathrm{O}(1)$	0.379 5(3)	0.3347 (3)	0.5080 (4)	C(34)	0.879 89(29)	$0.49089(26)$	$0.3536(4)$
$\mathrm{O}(2)$	$0.3925(3)$	0.1554 (3)	0.5597 (3)	C(35)	0.774 45(29)	$0.49084(26)$	0.295 6(4)
$\mathrm{O}(3)$	$0.6257(3)$	$0.15183(29)$	$0.6102(4)$	C(36)	0.713 34(29)	$0.40038(26)$	0.283 3(4)
$\mathrm{O}(4)$	$0.4009(3)$	$0.41065(29)$	$0.2377(4)$	C(41)	0.711 67(29)	0.1766 (3)	0.1821 (3)
$\mathrm{O}(5)$	$0.50000(0)$	$0.00000(0)$	0.50000 (0)	C(42)	0.738 85(29)	0.084 4(3)	0.1809 (3)
C(1)	0.543 0(4)	$0.2791(4)$	0.4567 (5)	C(43)	0.763 86(29)	0.072 1(3)	0.079 2(3)
C(2)	0.355 2(4)	0.2416 (4)	$0.3387(4)$	C(44)	0.761 66(29)	0.1520 (3)	-0.0211(3)
C(3)	0.624 4(4)	$0.2415(4)$	$0.5618(5)$	C(45)	0.734 49(29)	0.244 3(3)	-0.019 9(3)
C(4)	0.333 3(4)	$0.3368(4)$	0.2513 (5)	C(46)	0.709 49(29)	0.256 6(3)	0.0817 (3)
C(5)	$0.4648(4)$	0.014 6(4)	$0.1718(6)$	C(71)	0.224 42(23)	$0.34451(29)$	0.177 4(3)
C(6)	0.7311 (5)	0.0938 (5)	$0.4311(6)$	C(72)	$0.21517(23)$	$0.41253(29)$	0.067 0(3)
C(7)	$0.1717(9)$	0.204 4(9)	$0.6102(14)$	$\mathrm{C}(73)$	0.115 22(23)	$0.42464(29)$	-0.003 2(3)
C(11)	$0.27825(19)$	$0.10411(26)$	0.146 2(3)	$\mathrm{C}(74)$	0.024 53(23)	$0.36877(29)$	0.0369 (3)
C(12)	0.23970 (19)	0.032 64(26)	0.239 3(3)	C(75)	$0.03379(23)$	$0.30074(29)$	0.147 3(3)
C(13)	$0.13054(19)$	0.004 45(26)	0.2331 (3)	$\mathrm{C}(76)$	$0.13374(23)$	$0.28863(29)$	0.217 6(3)
C(14)	0.059 91(19)	0.047 71(26)	0.1338 (3)	C(81)	$0.70543(24)$	$0.31683(24)$	0.6080 (3)
C(15)	$0.09846(19)$	$0.11917(26)$	0.040 7(3)	C(82)	$0.68816(24)$	$0.41651(24)$	0.5904 (3)
C(16)	$0.20761(19)$	0.147 36(26)	0.0469 (3)	C(83)	0.764 04(24)	$0.48161(24)$	0.643 7(3)
C(21)	0.4407 (3)	$0.21706(24)$	$0.02091(25)$	C(84)	0.857 23(24)	0.447 03(24)	0.7145 (3)
C(22)	0.439 4(3)	0.177 97(24)	$-0.07405(25)$	C(85)	$0.87450(24)$	$0.34735(24)$	0.7321 (3)
C(23)	0.456 2(3)	$0.24277(24)$	$-0.18176(25)$	C(86)	0.798 62(24)	0.282 25(24)	0.678 8(3)
C(24)	0.474 4(3)	0.346 65(24)	-0.194 46(25)	$\mathrm{Cl}(1)$	0.089 44(28)	$0.12095(28)$	0.5325 (3)
C(25)	0.4757 (3)	$0.38572(24)$	$-0.09947(25)$	$\mathrm{Cl}(2)$	0.116 2(3)	$0.21453(29)$	0.7235 (3)

phenyl carbon atoms, were given anisotropic thermal parameters. All the phenyl rings (including hydrogen atoms) were treated as rigid bodies with $D_{6 h}$ symmetry (C-C $1.395, \mathrm{C}-\mathrm{H}$ $1.08 \AA$). The hydrogen atom positions for $\mathrm{H}(1)$ and $\mathrm{H}(2)$ were located from a difference Fourier map and were refined with isotropic thermal parameters. Final cycles employed a weighting factor $w=1 /\left(\sigma^{2} F+g F^{2}\right) \quad(g=0.001117)$ and gave the final residual indices $R\left\{=\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|\right\} 0.0595$ and $R^{\prime}\left\{=\left[\Sigma \mathrm{w}^{\prime}\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma\left|F_{\mathrm{c}}\right|^{2}\right]^{\frac{1}{2}}\right\} 0.0580$. The atomic coordinates for the structure are given in Table 4.
(b) $\left[\mathrm{Pd}\left\{\mathrm{CH}(\mathrm{COPh}) \mathrm{S}(\mathrm{O})_{2} \mathrm{C} H(\mathrm{COPh})\right\}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\mathrm{H}_{2} \mathrm{O},(6 \mathrm{i}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. Conditions were as for (6a), except: 5536 reflections from Weissenberg layers $h k(0-13)$ having $I>3 \sigma(I)$; weighting parameter $g=0.000820$. Final R and R^{\prime} values were 0.0745 and 0.0823 . No absorption correction was applied.
Crystal data. $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PdS} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{M}=908.17$, triclinic, space group $P \overline{1}, a=12.985(5), b=13.93(1), c=$ 12.057(6) $\AA, \alpha=73.71(3), \beta=102.61(5), \gamma=100.01(3)^{\circ}, U=$ $2028.11 \AA^{3}, Z=2, D_{\mathrm{c}}=1.49 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=1028.0$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=6.86 \mathrm{~cm}^{-1}$. The atomic co-ordinates for the structure are given in Table 5 .
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank the S.E.R.C. for support and for provision of highfield n.m.r. facilities, Johnson Matthey p.l.c. for the generous loan of platinum metal salts, and Dr. O. W. Howarth (University of Warwick) and Miss M. Robinson (University of Leicester) for high-field n.m.r. measurements.

References

1 Part 1, K. W. Chiu, J. Fawcett, W. Henderson, R. D. W. Kemmitt, and D. R. Russell, J. Chem. Soc., Dalton Trans., 1987, 733.
2 D. A. Clark, R. D. W. Kemmitt, M. A. Mazid, P. McKenna, D. R. Russell, M. D. Shilling, and L. J. S. Sherry, J. Chem. Soc., Dalton Trans., 1984, 1993.
3 W. Henderson, R. D. W. Kemmitt, J. Fawcett, L. J. S. Prouse, and D. R. Russell, J. Chem. Soc., Chem. Commun., 1986, 1791.

4 A. Imran, R. D. W. Kemmitt, A. J. W. Markwick, P. McKenna, D. R. Russell, and L. J. S. Sherry, J. Chem. Soc., Dalton Trans., 1985, 549.
5 R. M. Dodson, E. H. Jancis, and G. Klose, J. Org. Chem., 1970, 35, 2520; J. F. Chiang, Acta Crystallogr., Sect. C, 1983, 39, 737; M. L. Ziegler, J. Weiss, H. Schildknecht, N. Grund, and H-E. Sasse, Liebigs, Ann. Chem., 1973, 1702; G. D. Andreeti, L. Cavalca, and P. Sgarabotto, Gazz. Chim. Ital., 1971, 101, 440; S. Kumakura, Bull. Chem. Soc. Jpn., 1975, 48, 2164.
6 R. J. Puddephatt, Coord. Chem. Rev., 1980, 33, 149; R. J. Klingler, J. C. Huffman, and J. K. Kochi, J. Am. Chem. Soc., 1982, 104, 2147.

7 J. A. Ibers, R. DiCosimo, and G. M. Whitesides, Organometallics, 1982, 1, 13.
8 R. D. W. Kemmitt, P. McKenna, D. R. Russell, and L. J. S. Sherry, J. Chem. Soc., Dalton Trans., 1985, 259; M. D. Jones, R. D. W. Kemmitt, J. Fawcett, and D. R. Russell, J. Chem. Soc., Chem. Commun., 1986, 427; K. W. Chiu, W. Henderson, R. D. W. Kemmitt, L. J. S. Prouse, and D. R. Russell, J. Chem. Soc., Dalton Trans., 1988, 427.

9 I. Clark and M. A. McKervey, in 'Comprehensive Organic Chemistry,' ed. J. F. Stoddart, Pergamon, Oxford, 1979, vol. 1, p. 52.
10 D. E. Sands, Z. Kristallogr., 1963, 119, 245.
11 D. J. Brauer, C. Krüger, P. J. Roberts, and Y-H. Tsay, Chem. Ber., 1974, 107, 3706.
12 J-M. Bassett, J. R. Mandl, and H. Schmidbaur, Chem. Ber., 1980, 113, 1145; D. S. Dudis and J. P. Fackler, jun., J. Organomet. Chem., 1983, 249, 289; M. C. Cheng, S. M. Peng, I. J. B. Lin, B. H. H. Meng, and C. H. Liu, ibid., 1987, 327, 275; I. J. B. Lin, L. Hwan, H. C. Shy, M. C. Chen, and Y. Wang, ibid., 1986, 315, 135.
13 H-J. Gais, H. J. Lindner, and J. Vollhardt, Angew. Chem., Int. Ed. Engl., 1985, 24, 859.
14 G. Boche, M. Marsch, K. Harms, and G. M. Sheldrick, Angew. Chem., Int. Ed. Engl., 1985, 24, 859.
15 H-J. Gais, J. Vollhardt, and H. J. Lindner, Angew Chem., Int. Ed. Engl., 1986, 25, 939.
16 D. R. Johnson, F. X. Powell, and W. H. Kirchhoff, J. Mol. Spectrosc., 1971, 39, 136.
17 L. G. Vorontsova, Sov. Phys.-Crystallogr. (Engl. Transl.), 1965, 10, 139.

18 J. Rajaram and J. A. Ibers, J. Am. Chem. Soc., 1978, 100, 829.
19 J. M. Wisner, T. J. Bartczak, and J. A. Ibers, Organometallics, 1986, 5, 2044.

20 A. Sonoda, P. M. Bailey, and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1979, 346.
21 F. A. Bovey, 'Nuclear Magnetic Resonance Spectroscopy,' Academic Press, New York, 1969.
22 D. A. Redfield, J. H. Nelson, and L. W. Cary, Inorg. Nucl. Chem. Lett., 1974, 10, 727; D. A. Redfield, L. W. Cary, and J. H. Nelson, Inorg. Chem., 1975, 14, 50.
23 T. Glonek and J. R. van Wazer, J. Magn. Reson., 1974, 13, 390.
24 J. X. McDermott, J. F. White, and G. M. Whitesides, J. Am. Chem. Soc., 1976, 98, 6521.
25 D. Drew and J. R. Doyle, Inorg. Synth., 1972, 13, 52.
26 R. T. Markham, E. A. Dietz, jun., and D. R. Martin, Inorg. Synth., 1976, 16, 153.
27 E. Fromm and J. Flaschen, Liebigs Ann. Chem., 1912, 384, 310.
28 V. Baliah and T. Rangarajan, J. Chem. Soc., 1954, 3068.
29 M. L. Miles, T. M. Harris, and C. R. Hauser, J. Org. Chem., 1965, 30, 1007.

30 G. M. Sheldrick, SHELX 76 program for crystal structure determination, University of Cambridge, 1976.
31 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1975, vol. 4.

[^0]: + (1,3-Dibenzoyl-2,2-dioxo-2 λ^{6}-thiapropane-1,3-diyl)bis(triphenyl-phosphine)platinum(iI)-dichloromethane (1/2), (1,3-dibenzoyl-2,2-di-oxo- $2 \lambda^{6}$-thiapropane-1,3-diyl)bis(methyldiphenylphosphine)palla-dium(II)-dichloromethane-hydrate (1/1/1).
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii-xx.

